Langsung ke konten utama

Algoritma Perceptron (Rosenblatt, 1958)

Perceptron (Rosenblatt, 1958)

      Selamat malam pemirsa, mumpung agak longgar saya mau nambahin coretan lagi di blog ini. Ngelanjutin tentang Neural network pada tulisan saya sebelumnya. Cekidot...

Pengertian

        Perceptron merupakan salah satu jenis ANN supervised. Perceptron pertama kali diperkenalkan oleh Frank Rosenblatt pada tahun 1958. Perceptron adalah jenis ANN untuk layer tunggal dan mempunyai performa yang baik pada klasifikasi data linear. Untuk klasifikasi data yang tidak linear, perceptron mempunyai performa yang kurang baik.Berikut merupakan arsitektur perceptron.


Gambar arsitektur perceptron

       Dari gambar di atas,x1 dan x2 adalah input. Input di sini adalah parameter atau fitur data yang akan di gunakan untuk data latih maupun data uji. Sedangkan w1 dan w2 adalah bobot. dan y adalah output.

       Perceptron menggunakan fungsi aktivasi untuk mendapatkan output. Untuk penjelasan fungsi aktivasi bisa agan baca di tulisan saya sebelumnya tentang Neural network.

Algoritma

  1. merupakan data latih,x adalah data latih dan y adalah target yang di inginkan, inisialisasi bobot awal w ,learning rate dan maksimal epoh
  2. hitung v dengan rumus v = (x*w)
  3. hitung output dengan fungsi aktivasi output = sign(v)
  4. jika output = target, maka di lanjutkan menghitung data kedua
  5. jika output != target,maka lanjut ke langkah ke enam
  6. hitung error,error = target - output
  7. hitung bobot baru dengan rumus, bobot baru = bobot lama + (learning rate*error*input)
  8. kembali ke langkah kedua untuk menghitung data selanjutnya dengan bobot baru
  9. berhenti jika bobot tidak berubah untuk semua data atau iterasi maksimal epoh terpenuhi

sementara cukup untuk kali ini, untuk contoh perhitungan manualnya kita lanjutkan pada kesempatan yang akan datang.salam...

Komentar

Postingan populer dari blog ini

Contoh Perhitungan Algoritma Perceptron

      Melanjutkan tulisan saya sebelumnya tentang algoritma perceptron,kali ini saya akan menulis tentang conto perhitungan manual algoritma perceptron. Untuk contoh kasusnya saya menggunakan data logika AND. Cekidot.... Algoritma      Data yang kita gunakan sebagai contoh adalah data logika AND sebagai berikut: x1 x2 target 0 0 0 0 1 0 1 0 0 1 1 1       tentukan bobot awal secara acak, saya pakai contoh w1 = 0,w2 =0, learning rate = 1, bias = 0,maksimal epoh = 10. Disini saya memakai fungsi aktivasi undak biner. Epoh ke 1 Data ke satu x = {0,0}, bobot w = {0,0},b=0,target = 0 y_in = (x1*w1)+(x2*w2)+b = (0*0)+(0*0)+0 = 0 y = sign(0) = 1 karena y != target maka hitung error dan update bobot  error = target - y = 0 - 1 = -1 w1_baru = w1_lama +(learning_rate*error*x1)                = 0 ...

Contoh Perhitungan Algoritma Learning Vector Quantization

Melanjutkan tulisan saya tentang algoritma Learning Vector Quantization yang lalu, kali ini saya akan melanjutkan dengan contoh perhitungan manual. Berikut ini contoh data yang akan kita hitung. No X1 X2 X3 X4 target 1 0 1 1 0 0 2 0 0 1 1 1 3 1 1 1 1 0 4 1 0 0 1 1 pada contoh di atas, saya menggunakan 4 data sebagai data training beserta target yang bertujuan untuk mendapatkan bobot yang akan digunakan pada proses klasifikasi. Bobot awal adalah { 1, 1, 1, 0} dan { 1, 0, 1, 1} dengan learning rate 0,05 dengan fungsi pembelajaran = 0,1. Pelatihan Iterasi ke 1 1. Data ke 1 { 0, 1, 1, 0} dengan target 0, bobot = {{ 1, 1, 1, 0},{ 1, 0, 1, 1}}      - menghitung bobot untuk masing masing output :          kelas 0 = sqrt(((0-1)^2)+((1-1)^2)+((1-1)^2)+((0-...

Part 7 : Normalisasi Histogram

Menyambung tulisan saya yang sebelumnya tentang pengolahan citra khususnya histogram,kali ini saya lanjutkan tentang Normalisasi histogram.Sebelumnya saya harap agan sudah mengerti tentang histogram.Jika belum bisa di baca dulu di tulisan saya sebelumnya di sini . Normalisasi Histogram adalah menskalakan nilai piksel secara linear untuk menggunakan secara penuh jangkauan yang tersedia. Rumus :  Keterangan : n k= nilai grayscale dari piksel ke k(k = 0,1,2,3....) min = nilai grayscale terkecil yang diperoleh dari histogram max = nilai grayscale terbesar L = range nilai grayscale citra Contoh perhitungan : dari tabel di atas,nilai min adalah 2 yaitu nilai grayscale terkecil dari citra dan max adalah 5 s = 0 - 2 /5 - 2 =0 (untuk n = 0)  hasil = 0 x 7(nilai maksimal grayscale) = 0 sk = 3 - 2 /5 - 2 = 0.333  (untuk n = 3) hasil = 0.333 x 7 = 2 keterangan : 7 adalah range grayscale dari citra,dan untuk banyak kasus biasanya memakai 255. Tujuan Normalisasi...