Langsung ke konten utama

Learning Vector Quantization (LVQ)

Learning Vector Quantization (LVQ) adalah sebuah metode klasifikasi dimana setiap unit output mempresentasikan sebuah kelas. LVQ digunakan untuk pengelompokkan dimana jumlah kelompok sudah ditentukan arsitekturnya (target/kelas sudah ditentukan).

LVQ salah satu jaringan syaraf tiruan yang merupakan algoritma pembelajaran kompetitif terawasi versi dari algoritma Kohonen Self-Organizing Map (SOM). Tujuan dari algoritma ini adalah untuk mendekati distribusi kelas vektor  untuk meminimalkan kesalahan dalam pengklasifikasian.

Algoritma diusulkan oleh Kohonen pada tahun 1986 sebagai perbaikan dari Vector Quantization. Model pembelajaran LVQ dilatih secara signifikan agar lebih cepat dibandingkan algoritma lain seperti Back Propagation Neural Network. Hal ini dapat meringkas atau mengurangi dataset besar untuk sejumlah kecil vektor.

Arsitektur LVQ seperti pada gambar berikut:






Adapun Langkah langkah LVQ sebagai berikut:
  • Tetapkan: bobot(W), maksimum epoch (MaxEpoch), error minimum yang diharapkan (Eps), Learning rate (α).
  • Masukan:
  1. Input : x(m,n);
  2. Target : T(1,n)
  • Tetapkan kondisi awal:
  1. Epoch = 0;
  2. Eps = 1;
  • Tetapkan jika:epoch < MaxEpoch atau ( e < eps)
  1. Epoch = Epoch + 1
  2. Kerjakan untuk i = 1 sampai n
  • Tentukan J sedemikian hingga || x – wj || minimum (sebut sebagai Ci)
  • Perbaiki Wj dengan ketentuan:
           - Jika T = Cj maka: wj(baru) = wj(lama) + α (x-wj(lama))
           - Jika T ≠ Cj maka: wj(baru) = wj(lama) - α (x-wj(lama))
  • Kurangi nilai α
Sekian, saya lanjutkan dengan contoh perhitungan dilain kesempatan. Thanks.

Komentar

Postingan populer dari blog ini

Contoh Perhitungan Algoritma Perceptron

      Melanjutkan tulisan saya sebelumnya tentang algoritma perceptron,kali ini saya akan menulis tentang conto perhitungan manual algoritma perceptron. Untuk contoh kasusnya saya menggunakan data logika AND. Cekidot.... Algoritma      Data yang kita gunakan sebagai contoh adalah data logika AND sebagai berikut: x1 x2 target 0 0 0 0 1 0 1 0 0 1 1 1       tentukan bobot awal secara acak, saya pakai contoh w1 = 0,w2 =0, learning rate = 1, bias = 0,maksimal epoh = 10. Disini saya memakai fungsi aktivasi undak biner. Epoh ke 1 Data ke satu x = {0,0}, bobot w = {0,0},b=0,target = 0 y_in = (x1*w1)+(x2*w2)+b = (0*0)+(0*0)+0 = 0 y = sign(0) = 1 karena y != target maka hitung error dan update bobot  error = target - y = 0 - 1 = -1 w1_baru = w1_lama +(learning_rate*error*x1)                = 0 ...

Contoh Perhitungan Algoritma Learning Vector Quantization

Melanjutkan tulisan saya tentang algoritma Learning Vector Quantization yang lalu, kali ini saya akan melanjutkan dengan contoh perhitungan manual. Berikut ini contoh data yang akan kita hitung. No X1 X2 X3 X4 target 1 0 1 1 0 0 2 0 0 1 1 1 3 1 1 1 1 0 4 1 0 0 1 1 pada contoh di atas, saya menggunakan 4 data sebagai data training beserta target yang bertujuan untuk mendapatkan bobot yang akan digunakan pada proses klasifikasi. Bobot awal adalah { 1, 1, 1, 0} dan { 1, 0, 1, 1} dengan learning rate 0,05 dengan fungsi pembelajaran = 0,1. Pelatihan Iterasi ke 1 1. Data ke 1 { 0, 1, 1, 0} dengan target 0, bobot = {{ 1, 1, 1, 0},{ 1, 0, 1, 1}}      - menghitung bobot untuk masing masing output :          kelas 0 = sqrt(((0-1)^2)+((1-1)^2)+((1-1)^2)+((0-...

Part 7 : Normalisasi Histogram

Menyambung tulisan saya yang sebelumnya tentang pengolahan citra khususnya histogram,kali ini saya lanjutkan tentang Normalisasi histogram.Sebelumnya saya harap agan sudah mengerti tentang histogram.Jika belum bisa di baca dulu di tulisan saya sebelumnya di sini . Normalisasi Histogram adalah menskalakan nilai piksel secara linear untuk menggunakan secara penuh jangkauan yang tersedia. Rumus :  Keterangan : n k= nilai grayscale dari piksel ke k(k = 0,1,2,3....) min = nilai grayscale terkecil yang diperoleh dari histogram max = nilai grayscale terbesar L = range nilai grayscale citra Contoh perhitungan : dari tabel di atas,nilai min adalah 2 yaitu nilai grayscale terkecil dari citra dan max adalah 5 s = 0 - 2 /5 - 2 =0 (untuk n = 0)  hasil = 0 x 7(nilai maksimal grayscale) = 0 sk = 3 - 2 /5 - 2 = 0.333  (untuk n = 3) hasil = 0.333 x 7 = 2 keterangan : 7 adalah range grayscale dari citra,dan untuk banyak kasus biasanya memakai 255. Tujuan Normalisasi...